
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Coupling WRF to Other Models

John Michalakes

WRF Users Workshop

June 25, 2010

Innovation for Our Energy Future

Provide users with introduction to…

– Why couple WRF to other models?

– Modes of coupling and tradeoffs

– WRF infrastructure provisions

Purpose

Innovation for Our Energy Future

High level

– Coupling is complex, app. specific

– Multi-faceted – complexity is a product of:

• Each component’s complexity

• Infrastructure’s complexity

• Complexity of system as a whole

1 hour tutorial…

– Only covering WRF side with some use cases

– Where to find out more (at the end)

Scope

Innovation for Our Energy Future

Why couple?

Types of coupling

Coupling packages

Coupling support in WRF software

Examples

– WRF-HyCOM using MCEL

– WRF-HyCOM using ESMF

Final thoughts

Model Coupling Overview

Innovation for Our Energy Future

Why couple?

We are past the point of single

model simulations.

Trend will be multi-scale multi-

model simulations.

Innovation for Our Energy Future

Why couple?

We are past the point of single

model simulations.

Trend will be multi-scale multi-

model simulations.

Innovation for Our Energy Future

Wind Energy (MCEL)

Slides and images courtesy Idar Barstad

Innovation for Our Energy Future

Wind Energy (MCEL)

Slides and images courtesy Idar Barstad

Innovation for Our Energy Future

9

Model Coupling: Coupling Modes

Subroutinized
– Communication through subroutine calls and argument lists

– Components must be code-compatible

– More efficient

Componentized
– Component interaction: Scheduled or Peer-to-Peer

– Component execution: Sequential or Concurrent

– More flexible

Innovation for Our Energy Future

10

Model Coupling: Coupling Modes

Subroutinized
– Communication through subroutine calls and argument lists

– Components must be code-compatible

– More efficient

Componentized
– Component interaction: Scheduled or Peer-to-Peer

– Component execution: Sequential or Concurrent

– More flexible

Innovation for Our Energy Future

11

Component Interaction

Scheduled
– Regular, a-priori scheduled

interactions

– Logically "hub and spoke"

– May have distinct coupler

component (but not necessary)

– Example: Community Climate

System Model (CCSM)

• CAM, POP, CICE, LSM

• Coupler implemented using

MCT

Innovation for Our Energy Future

12

Component Interaction

Peer-to-peer
– Logically federated

– Components produce and consume

– Components may comprise schedule-
coupled components

– No central control or schedule,
essentially data-flow

– Example: HFSoLE

• Atmosphere: COAMPS or WRF

• LSOM, SWAN, ADCIRC (Persian Gulf)

• NCOM, SWAN, LSOM (Adriatic)

• ADH, NCOM, ADCIRC (Mississippi
Sound)

• Coupling infrastructure using MCEL

Source: Rick Allard, NRL, UGC 2002 Presentation Slides

HFSoLE

Innovation for Our Energy Future

Types of Coupling

Sequential coupling

– Components are run in sequence by all processors

– Forcing data is interpolated from grid-to-grid

– All processes can be kept active without forcing components to be out of

phase with each other

– Performance and scaling is limited by least scalable component

13

Atmos Land Ice Ocean

run time

Innovation for Our Energy Future

Types of Coupling

Concurrent coupling

– Components integrate concurrently on separate sets of processes

– Periodically communicate forcing data to other components on some

schedule

– Parallelism is both within and between the components; subject to load

imbalance

– Two-way coupling requires solutions from components to be slightly out of

phase if the components are to run concurrently

Atmos

Land

Coupler

Ice

Ocean

run time

Innovation for Our Energy Future

Types of Coupling

Hybrid concurrent and sequential

– Components with sequential dependency or small components execute

sequentially filling in the gaps

– Large components run concurrently

– Latest version of CCSM will run this way

15

ti
m

e

processors

Figure courtesy of

Rich Loft, NCAR

Innovation for Our Energy Future

Coupling packages

Attributes

– Functionality

– Efficiency

– Portability

– Flexibility

– Ease of

deployment/use/maintenance

– Support and adoption

– Status in WRF

Available packages

– ESMF (NOAA)
• Large community effort

• Basis for NOAA modeling systems

• WRF one of the first ESMF components

• www.earthsystemmodeling.org

– MCEL (AFRL)
• DoD-developed coupler

• U. Miami, NORCOWE, other WRF users

• Not scalable

• http://www.bettencourt.info/MCEL

– MCT (Argonne NL)
• Basis for CCSM coupler

• WRF implementation is tot current supported

to community but being revived with regional

climate modeling at NCAR

• http://www.mcs.anl.gov/research/projects/mct/

– HRF Coupler

• Specific to HWRF and configuration

dependent

http://www.earthsystemmodeling.org/
http://www.bettencourt.info/MCEL
http://www.mcs.anl.gov/research/projects/mct/

Functionality Efficiency Portability Flexibility Ease of Use
Support and

Adoption
In WRF

Subroutine
Sequential
Single-exe

No regridding

Very good
Virtually no overhead

for coupling
Scales as well as app

itself

As portable as app itself
Plug and play support
from WRF Framework
Model Layer Interface

As easy or difficult as
adding a subroutine to

WRF.

One-off implemenation.
No support; no

adoption.

Supported by WRF
Software

Model Layer Interface

MCEL

Concurrent
Multi-exe

Data driven
On-line & off-line

Run-time regridding
Conservative possible

Adequate for 2D
coupling but client-
server architecture a
scaling bottleneck.

Data-driven control may
help with automatic

load balance.

Needs TCP/IP sockets.
Many package
dependencies.

Very good. Interaction
with other apps looks

like I/O.

Difficult to install
initially.

Transparent and easy to
use thereafter.

One person.
Some adoption.

Through WRF I/O API

MCT

Sequential/Concurrent
Single exe (Multi exe possible)

Concurrent/Multi-exec.
Offline regridding

Conservative

Good performance and
scaling

Widely ported.
Flexibility is up to the

implementer; MCT does
not impose or enforce.

It is a toolkit and must
be explicitly

programmed.
Need to jam apps into
single executable adds

complexity.

Supported as part of
DOE contribution to
CCSM. Adopted by

other groups.

Through WRF I/O API.
Has fallen out of use.

ESMF

Sequential/Concurrent
Single exe (Multi exe possible)

On-line regridding (non-conserv.)
Offline regridding (conserv.)

Nesting is problematic.

Good performance and
scaling

Widely ported.

Plug and play is
suported between

components that have
been reengineered to

ESMF APIs

Coupling must be
explicitly programmed.

Considerable
reengineering required

for existing apps.
Need to jam different

apps into single
executables adds

complexity.

Very well supported
and maintained. Stable

funding.
Widespread adoption,

but at varying and
sometimes trivial levels

of "compliance"

Coupling to single
domain through WRF

I/O API

Innovation for Our Energy Future

WRF does coupling the same way it does I/O

– Output to other models is specified by adding state data to I/O streams

in the Registry

– The I/O streams are directed to coupling formats using the io_form

setting for the stream in the namelist.input file

– Refer to WRF software tutorial notes

Other components may need to be reprogrammed explicitly to add

interfaces to the coupling infrastructure you wish to use (eg. ESMF,

MCEL)

WRF Support for Coupling

Innovation for Our Energy Future

Case: WRF and ESMF

WRF-SST Coupled code
– By Tom Henderson (NOAA) who

developed for the ESMF implementation
of the WRF I/O API

– Self-contained and distributed with
WRFV3

– ESMF Components
• WRF Model

• “Data Ocean” Component

• Coupler

– Simplified
• All components on same grid (no

interpolation)

• Coupling to a single WRF domain

• Includes coupling-through-files mode for
verification

– This is a good template to start with when
coupling WRF to other models through
ESMF. The WRF-LIS coupled system
was built this way.

Innovation for Our Energy Future

Case: WRF and ESMF

WRF-SST Coupled code

– Files and directories:

./main/wrf_SST_ESMF.F

– Contains definition of data-ocean and coupler

– Main program

./main/wrf_ESMFMod.F

– Contains definition of ESMF parts of WRF component

./external/io_esmf/README.io_esmf

– Detailed instructions for building the test case

./test/em_esmf_exp/README_WRF_CPL_SST.txt

– Detailed instructions for running the test case

Innovation for Our Energy Future

Case: WRF and ESMF

./main/wrf_SST_ESMF.F

– PROGRAM wrf_SST_ESMF

• Initializes ESMF

• Creates instances of the Gridded

Components

– WRF Model

– SST Dummy Model (this is the

“ocean”)

– WRF-SST Coupler

• “Registers” (ESMF verb) the components

by including entry points provided by

components that “init”, “run” and “finalize”

– WRF provides wrf_component_run

– Dummy ocean provides sst_component_run

– Coupler provides (guess)

• Creates the import and export states

• Add fields to the states (not shown)

• Initialize components adding states

• Time loop: run each component in

sequence

– Export of SST is Import of CPL

– Export of CPL is Import of WRF

– Export of WRF is Import of CPL

– Export of CPL is import of SST

• Shut down components

PROGRAM wrf_SST_ESMF

CALL ESMF_Initialize(vm=vm, ...

compWRF = ESMF_GridCompCreate(name=“WRF”, …

compSST = ESMF_GridCompCreate(name=“SST”, …

compCPL = ESMF_GridCompCreate(name=“CPL”, …

importWRF = ESMF_StateCreate(…

exportWRF = ESMF_StateCreate(…

importSST = ESMF_StateCreate(…

exportSST = ESMF_StateCreate(…

importCPL = ESMF_StateCreate(…

exportCPL = ESMF_StateCreate(…

CALL ESMF_GridCompSetServices(compWRF, WRF_register,

CALL ESMF_GridCompSetServices(compSST, SST_register,

CALL ESMF_GridCompSetServices(compCPL, CPL_register,

CALL ESMF_GridCompInitialize(compWRF,

importStateWRF, exportStateWRF, clock, …

CALL ESMF_GridCompInitialize(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_GridCompInitialize(compCPL,

importStateCPL, exportStateCPL, clock, …

DO WHILE (.NOT. ESMF_ClockIsStopTime(clock))

CALL ESMF_GridCompRun(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_CplCompRun(compCPL,

exportStateSST, importStateWRF, clock, …

CALL ESMF_GridCompRun(compWRF,

importStateWRF, exportStateWRF, clock, …

ENDDO

CALL ESMF_GridCompFinalize(compSST, …

CALL ESMF_GridCompFinalize(compWRF, …

CALL ESMF_GridCompFinalize(compCPL, …

END PROGRAM wrf_SST_ESMF

(if 2-way)

Innovation for Our Energy Future

Case: WRF and ESMFPROGRAM wrf_SST_ESMF

CALL ESMF_Initialize(vm=vm, ...

compWRF = ESMF_GridCompCreate(name=“WRF”, …

compSST = ESMF_GridCompCreate(name=“SST”, …

compCPL = ESMF_GridCompCreate(name=“CPL”, …

importWRF = ESMF_StateCreate(…

exportWRF = ESMF_StateCreate(…

importSST = ESMF_StateCreate(…

exportSST = ESMF_StateCreate(…

importCPL = ESMF_StateCreate(…

exportCPL = ESMF_StateCreate(…

CALL ESMF_GridCompSetServices(compWRF, WRF_register,

CALL ESMF_GridCompSetServices(compSST, SST_register,

CALL ESMF_GridCompSetServices(compCPL, CPL_register,

CALL ESMF_GridCompInitialize(compWRF,

importStateWRF, exportStateWRF, clock, …

CALL ESMF_GridCompInitialize(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_GridCompInitialize(compCPL,

importStateCPL, exportStateCPL, clock, …

DO WHILE (.NOT. ESMF_ClockIsStopTime(clock))

CALL ESMF_GridCompRun(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_CplCompRun(compCPL,

exportStateSST, importStateWRF, clock, …

CALL ESMF_GridCompRun(compWRF,

importStateWRF, exportStateWRF, clock, …

ENDDO

CALL ESMF_GridCompFinalize(compSST, …

CALL ESMF_GridCompFinalize(compWRF, …

CALL ESMF_GridCompFinalize(compCPL, …

END PROGRAM wrf_SST_ESMF

Innovation for Our Energy Future

Case: WRF and ESMFPROGRAM wrf_SST_ESMF

CALL ESMF_Initialize(vm=vm, ...

compWRF = ESMF_GridCompCreate(name=“WRF”, …

compSST = ESMF_GridCompCreate(name=“SST”, …

compCPL = ESMF_GridCompCreate(name=“CPL”, …

importWRF = ESMF_StateCreate(…

exportWRF = ESMF_StateCreate(…

importSST = ESMF_StateCreate(…

exportSST = ESMF_StateCreate(…

importCPL = ESMF_StateCreate(…

exportCPL = ESMF_StateCreate(…

CALL ESMF_GridCompSetServices(compWRF, WRF_register,

CALL ESMF_GridCompSetServices(compSST, SST_register,

CALL ESMF_GridCompSetServices(compCPL, CPL_register,

CALL ESMF_GridCompInitialize(compWRF,

importStateWRF, exportStateWRF, clock, …

CALL ESMF_GridCompInitialize(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_GridCompInitialize(compCPL,

importStateCPL, exportStateCPL, clock, …

DO WHILE (.NOT. ESMF_ClockIsStopTime(clock))

CALL ESMF_GridCompRun(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_CplCompRun(compCPL,

exportStateSST, importStateWRF, clock, …

CALL ESMF_GridCompRun(compWRF,

importStateWRF, exportStateWRF, clock, …

ENDDO

CALL ESMF_GridCompFinalize(compSST, …

CALL ESMF_GridCompFinalize(compWRF, …

CALL ESMF_GridCompFinalize(compCPL, …

END PROGRAM wrf_SST_ESMF

Innovation for Our Energy Future

Case: WRF and ESMF

./main/wrf_SST_ESMF.F

– SUBROUTINE sst_component_run

• Reads data from a file into a temporary

array named inptr

• Put data into ESMF export state

– Created in earlier example

– Defined as collection of fields (not shown)

– FIELD consists of

» Name

» Data, here a 2-D array allocated

when field was defined (not shown)

» Other attributes (not used in this

example)

• Access a field from the state and store field

in a temporary of type ESMF_Field

• Access the array from the field by passing

in a pointer. On return ptr will point to the

2D array stored in the field

• Copy the data that was read into

SUBROUTINE sst_component_run(…,importstate,exportstate,…)

TYPE(ESMF_State) :: importState, exportState

TYPE(ESMF_Field) :: field

REAL(ESMF_KIND_R4), DIMENSION(ips:ipe,jps:jpe) :: inptr

REAL(ESMF_KIND_R4), DIMENSION(:,:), POINTER :: optr

DO i = 1,datacount ! Number of fields

read field from file into inptr

CALL ESMF_StateGet(exportState,

TRIM(datanames(i)),

field)

CALL ESMF_FieldGet(field, 0,

ptr)

DO j = jps, jpe

DO i = ips, ipe

optr(i,j) = inptr(i,j)

ENDDO

ENDDO

ENDDO

END SUBROUTINE sst_component_run

Innovation for Our Energy Future

Case: WRF and ESMFPROGRAM wrf_SST_ESMF

CALL ESMF_Initialize(vm=vm, ...

compWRF = ESMF_GridCompCreate(name=“WRF”, …

compSST = ESMF_GridCompCreate(name=“SST”, …

compCPL = ESMF_GridCompCreate(name=“CPL”, …

importWRF = ESMF_StateCreate(…

exportWRF = ESMF_StateCreate(…

importSST = ESMF_StateCreate(…

exportSST = ESMF_StateCreate(…

importCPL = ESMF_StateCreate(…

exportCPL = ESMF_StateCreate(…

CALL ESMF_GridCompSetServices(compWRF, WRF_register,

CALL ESMF_GridCompSetServices(compSST, SST_register,

CALL ESMF_GridCompSetServices(compCPL, CPL_register,

CALL ESMF_GridCompInitialize(compWRF,

importStateWRF, exportStateWRF, clock, …

CALL ESMF_GridCompInitialize(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_GridCompInitialize(compCPL,

importStateCPL, exportStateCPL, clock, …

DO WHILE (.NOT. ESMF_ClockIsStopTime(clock))

CALL ESMF_GridCompRun(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_CplCompRun(compCPL,

exportStateSST, importStateWRF, clock, …

CALL ESMF_GridCompRun(compWRF,

importStateWRF, exportStateWRF, clock, …

ENDDO

CALL ESMF_GridCompFinalize(compSST, …

CALL ESMF_GridCompFinalize(compWRF, …

CALL ESMF_GridCompFinalize(compCPL, …

END PROGRAM wrf_SST_ESMF

May include

regridding and

redistribution

Innovation for Our Energy Future

Case: WRF and ESMFPROGRAM wrf_SST_ESMF

CALL ESMF_Initialize(vm=vm, ...

compWRF = ESMF_GridCompCreate(name=“WRF”, …

compSST = ESMF_GridCompCreate(name=“SST”, …

compCPL = ESMF_GridCompCreate(name=“CPL”, …

importWRF = ESMF_StateCreate(…

exportWRF = ESMF_StateCreate(…

importSST = ESMF_StateCreate(…

exportSST = ESMF_StateCreate(…

importCPL = ESMF_StateCreate(…

exportCPL = ESMF_StateCreate(…

CALL ESMF_GridCompSetServices(compWRF, WRF_register,

CALL ESMF_GridCompSetServices(compSST, SST_register,

CALL ESMF_GridCompSetServices(compCPL, CPL_register,

CALL ESMF_GridCompInitialize(compWRF,

importStateWRF, exportStateWRF, clock, …

CALL ESMF_GridCompInitialize(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_GridCompInitialize(compCPL,

importStateCPL, exportStateCPL, clock, …

DO WHILE (.NOT. ESMF_ClockIsStopTime(clock))

CALL ESMF_GridCompRun(compSST,

importStateSST, exportStateSST, clock, …

CALL ESMF_CplCompRun(compCPL,

exportStateSST, importStateWRF, clock, …

CALL ESMF_GridCompRun(compWRF,

importStateWRF, exportStateWRF, clock, …

ENDDO

CALL ESMF_GridCompFinalize(compSST, …

CALL ESMF_GridCompFinalize(compWRF, …

CALL ESMF_GridCompFinalize(compCPL, …

END PROGRAM wrf_SST_ESMF

Innovation for Our Energy Future

Configuring ESMF Coupling in WRF

– WRF uses I/O streams for ESMF coupling (Thanks Tom!)

– At compile time in the Registry

• Export variables to ESMF by adding them to the variable set for an auxiliary

output stream

• Import variables from ESMF by adding them to the variable set for an

auxiliary input stream

– At run time in the time_control section of the namelist.input file

• Set the io_form=7 for the streams defined above

• Set up any start, stop, and interval information

– Note:

• Only one stream in and one stream out

• Works only for one domain.

Case: WRF and ESMF

Innovation for Our Energy Future

Compiling the example

– See: ./external/io_esmf/README.io_esmf

– Set environment to point to ESMF 4.x on your system
setenv ESMFLIB=/mmm/users/michalak/esmf/lib/libg/AIX.default.64.mpi.default

setenv ESMFINC=/mmm/users/michalak/esmf/mod/modg/AIX.default.64.mpi.default

– Configure WRF

./configure Then select the dmpar option

– Compile
./compile em_real

– Resulting executable: main/wrf_SST_ESMF.exe

Case: WRF and ESMF

Innovation for Our Energy Future

Running the example
– Change directories to: /test/em_esmf_exp/README_WRF_CPL_SST.txt

– Refer to: README_WRF_CPL_SST.txt in that directory
– Unpack the coupler test configuration and data

% gunzip –c WRF_CPL_SST.tar.gz | tar xvf –

-rw-r--r-- 6368 Feb 27 13:16 namelist.input.jan00.ESMFSST

-rw-r--r-- 6368 Feb 27 13:16 namelist.input.jan00.NETCDFSST

-rw-r--r-- 1286 Feb 27 14:51 real.csh

-rwxr-xr-x 948 Feb 27 14:51 real.lsf.csh

-rw-r--r-- 458064 Oct 12 11:58 sstin_d01_000000

-rw-r--r-- 1074 Feb 27 14:51 test4_0.csh

-rwxr-xr-x 732 Feb 27 14:51 test4_0.lsf.csh

-rw-r--r-- 1162 Feb 27 14:51 test4_0_ESMFSST.csh

-rw-r--r-- 824 Feb 27 14:51 test4_0_ESMFSST.lsf.csh

-rw-r--r-- 1190 Feb 27 14:52 test4_0_NETCDFSST_wrfexe.csh

-rw-r--r-- 824 Feb 27 14:52 test4_0_NETCDFSST_wrfexe.lsf.csh

– Download the Jan 24, 2000 test case for WRF --- ask wrfhelp@ucar.edu

– Run the case (this is an LSF batch command script):
bsub < test4_0_ESMFSST.lsf.csh

– Save the files from the run in a subdirectory
mkdir test4_0_ESMFSST.out

$WRFDIR/test/em_esmf_exp >> mv PET?.ESMF* namelist.input rsl.*.* test4_0_ESMFSST.*.*
wrfout* test4_0_ESMFSST.out

Case: WRF and ESMF

Innovation for Our Energy Future

Running the example (continued)

– Rerun the case, this time just WRF, uncoupled
bsub < test4_0_NETCDFSST_wrfexe.lsf.csh

– Save the files from the standalone run in another subdirectory
% mkdir test4_0_NETCDFSST.out

% mv PET?.ESMF* namelist.input rsl.*.* test4_0_NETCDFSST.*.* wrfout*

sstout_d01_000000 test4_0_NETCDFSST.out

– Compare the outputs from the two runs. Should be bit for bit

% cmp -l test4_0_ESMFSST.out/wrfout_d01_2000-01-24_12:00:00

test4_0_NETCDFSST.out/wrfout_d01_2000-01-24_12:00:00 | wc

0 0 0 (you should see three zeros like this)

– This is telling you that output from a run gets the data through ESMF from the

coupled dummy ocean is exactly the same as ouput from a WRF run that reads the

data itself. Ie. Coupling is correct and has no effect on the data.

Case: WRF and ESMF

Innovation for Our Energy Future

Summary
– Engineer applications into components

• Modify top-level to add entry points

• Write the code to initialize and define ESMF states

• Wire them together

• Write the top-level driver

• Example is sequential coupled; concurrent is also possible

– Extending the example

• Supporting different grids means adding interpolation or
“regridding” in ESMF terminology

• ESMF 4 now supports on-line regridding (non-conservative).
Conservative regridding still uses off-line generated weights

• Nesting and moving nests is not supported

Case: WRF and ESMF

Innovation for Our Energy Future

Case: WRF and MCEL

WRF and HYCOM couple through
existing I/O modules

Concurrent execution on different sets
of processors

Applications synchronize themselves
based on data flow through MCEL

Regridding support

– Built-in to MCEL, transparent

– Uses geo-location data already
provided by applications

– Supports any projection

– Structured or unstructured grids

MCEL server-managed data cache

– Easy to switch between on-line
and off-line coupling

– Especially useful for WRF to
generate spin-up data for HYCOM

– Fault-tolerance

Easy to add other models (e.g. wave)
to configuration; simply another client

Server processors

(shared memory)

MCEL

MCEL

Cache

M
C

E
L

 c
li

en
t
A

P
I

M
C

E
L

 c
li

en
t
A

P
I

W
R

F
 I

/O
 A

P
I

n WRF processors

m HYCOM processors

WRF sends (from 4km nest):

Surface winds & air temps

Precipitation

Radiation fluxes

WRF Receives:

SST

Roughness length (later)

HYCOM sends:

SSTs

HYCOM Receives:

Winds

Precipitation

Radiation fluxes

*Model Coupling Environment Library, M. Bettencourt, AFRL

HYCOM image courtesy A. Wallcraft, NRL

HYCOM/MCEL courtesy P. Fitzpatrick & N. Tran, MSU

Innovation for Our Energy Future

Configuring MCEL Coupling in WRF

– WRF uses I/O streams for MCEL coupling

• Developed with Matt Bettencourt under DOD PET project

– At compile time in the Registry

• Send variables to MCEL server by adding them to the variable set for an

auxiliary output stream

• Get variables from MCEL server by adding them to the variable set for an

auxiliary input stream

– At run time in the time_control section of the namelist.input file

• Set the io_form=5 for the streams defined above

• Set up any start, stop, and interval information

– Allows multiple streams and coupling to multiple domains. Moving nests

not implemented.

Case: WRF and MCEL

Innovation for Our Energy Future

Case: WRF and MCEL

Modifying code for MCEL coupling

– Codes using MCEL must be linked to the MCEL, CORBA,

pthreads, and C++ versions of NetCDF libraries (Fortunately

these are included in the MCEL distribution

– Calls to MCEL are placed in the I/O routines and toggled on and

off with conditionals depending on whether running coupled

• Sending data from HYCOM to MCEL

call getData(filID,"U10",aU10,start_time,end_time, &

MCEL_TIMECENT_POINT,1,MCEL_FETCHPOLICY_BLOCK,ierr)

• Getting data to HYCOM from MCEL

call storeData(progID,"SST",ahycomSST,start_time, &

end_time,MCEL_TIMECENT_POINT,ierr)

• Like ESMF, needs some setup, encapsulated in the HYCOM

initialization routines

Innovation for Our Energy Future

Case: WRF and MCEL

if (root) then

call newGrid(gridID,2,MCEL_GRIDTYPE_STRUCTURED,

& MCEL_GRIDCENT_NODAL,

& MCEL_GRIDCOORD_LATLONG,ierr)

sizes(1) = ITDM

sizes(2) = JTDM

call setsize(gridID,sizes,ierr)

call setlocationsxy(gridID,lon8,lat8,ierr)

call setMask(gridID,amask,ierr)

C Register a new program

call newProgram(progID,“HYCOM",ierr)

call addvar(progID,"SST",MCEL_DATATYPE_DOUBLE,ierr)

call setgrid(progID,gridID,ierr)

call finalize(progID,ierr)

. . .

Innovation for Our Energy Future

Case: WRF and MCEL

Compiling

– Download and install MCEL

– Build application normally and link with addition of libraries.

• MCEL

• CORBA (openOrb)

• Pthreads

• C++ versions of NetCDF libraries

• Fortunately these are included in the MCEL distribution

Innovation for Our Energy Future

Case: WRF and MCEL

Running – at command line or in batch script
– Start up the MCEL server and interpolation program first.

• These create .ior “magic cookie” files with TCP/IP information for the
components to find them on the network

– Then start up the components of the coupled system

• Components start up, initialize client side of MCEL

– Look for .ior file and get cookie

– Use cookie to open sockets to the MCEL server and interpolation
program

– Start running and then read and write coupling data over the TCP-IP
sockets through the calls to getData and storeData

– Making sure everything starts up can be an issue for batch
scheduled environments.

• Run when there’s enough resources

• Make friends with your system administrators

Innovation for Our Energy Future

MCT Interpolation

Interpolation is treated as a sparse-matrix
multiply: y = Mx

MCT datatypes:
– M SparseMatrix: hold distributed elements of the

matrix (elements calculated offline using SCRIP)

– y, x AttributeVectors: distributed data type
holding all data to be interpolated.

– x: data (T, q, u, v, etc.) on original grid and
decomposition

– y: same data interpolated to new grid and
decomposition.

Slides courtesy Rob Jacob, ANL

Innovation for Our Energy Future

MCT Interpolation

X and Y are distributed over processors. How

do you distribute M?

MCT lets you choose:

– Distribute elements according to distribution of Y

– Distribute elements according to distribution of X.

– MCT methods:

• SparseMatrixComms,

• SparseMatrixtoMaps (“Map” is MCT GlobalSegMap, a

decomposition descriptor)

Innovation for Our Energy Future

Matrix decomposition (according to y)

Points on ocean grid (y)

Ocean grid decomp.

Non-zero matrix elements

(interpolation weights)

Derived decomposition

For atmosphere (x’). Note:

some points needed more

than once

Points on

atm grid (x)

Innovation for Our Energy Future

Interpolation steps

Initialization
– Read in matrix elements

– Distribute matrix elements in “y” order (SparseMatrixComms)

– Derive new decomposition descriptor for x, call it x’
(SparseMatrixToMaps)

– Derive MCT Rearranger datatype to describe how to move
data from x to x’ (Rearranger)

Run
– Use MCT Rearrange method to move data from x to x’.

– Perform data-local multiply of elements of x’ and M. Result
is y

MCT MatAttrVectMul class can perform multiply and, if
requested, the rearrange.

Innovation for Our Energy Future

Summary

Coupling is non-trivial

– WRF supports interfaces to multiple coupling layers but it’s a

bigger problem than just WRF

– Be ready to invest time in reengineering codes

– Be ready to look beyond the plumbing

– Be ready to be surprised at the many new ways coupled

modeling systems can fail or just be weird

Innovation for Our Energy Future

Summary

Useful links

– ESMF: www.earthsystemmodeling.org

– MCEL: www.bettencourt.info/MCEL

– MCT: www.mcs.anl.gov/research/projects/mct

– WRF Software: www.mmm.ucar.edu/wrf/WG2/software_2.0

A few examples of coupled modeling systems:

– CCSM: www.ccsm.ucar.edu

– GEOS-5: opensource.gsfc.nasa.gov/projects/GEOS-5/index.php

– NEMS: ams.confex.com/ams/pdfpapers/154223.pdf

Innovation for Our Energy Future

